2Q

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, E, F lần lượt là trung điểm SB, SD và I là điểm nằm trên đoạn AB sao cho IA-3IB. O là giao điểm của AC và BD. a) Tìm giao tuyến của mp(SAC) và mp(SBD); giao tuyến của mp (SEF) và mp (ACD). b) Tìm giao tuyến của (ABCD) và (AEF). c) Tìm giao điểm H của SA và mp (EFI); giao điểm K của IF và (SAC). NỐT LUN CÂU NÀY KU Ạ , EM XIN CẢM TẠ

NT
8 tháng 12 2023 lúc 4:35

a: \(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

\(D\in FS\subset\left(SFE\right)\)

\(B\in SE\subset\left(SFE\right)\)

Do đó: \(BD\subset\left(SFE\right)\)

Ta có: \(O\in BD\subset\left(SEF\right)\)

\(O\in AC\subset\left(ACD\right)\)

Do đó: \(O\in\left(SEF\right)\cap\left(ACD\right)\)

mà \(D\in\left(SEF\right)\cap\left(ACD\right)\)

nên \(\left(SEF\right)\cap\left(ACD\right)=DO\)

b: Xét ΔSDB có

E,F lần lượt là trung điểm của SB,SD

=>EF là đường trung bình của ΔSDB

=>EF//DB

Xét (ABCD) và (AEF) có

BD//EF

\(A\in\left(ABCD\right)\cap\left(AEF\right)\)

Do đó: (ABCD) giao (AEF)=xy, xy đi qua A và xy//BD//EF

 

Bình luận (1)