Tuyển Cộng tác viên Hoc24 nhiệm kì 26: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho hình chóp S.ABC có đáy là tam giác ABC vuông tai B; SA = AB = BC = a và SA vuông góc (ABC). Chứng minh rằng:
a) BC vuông góc (SAB)
b) BC vuông góc SA
c) tìm góc giữa AC và (SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA = a 3 và vuông góc với mặt đáy (ABC). Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABC). Mệnh đề nào sau đây đúng?
A. φ = 30 o
B. sin φ = 5 5
C. φ = 60 o
D. sin φ = 2 5 5
Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với mặt phẳng (ABC), tam giác ABC vuông cân ở A và có đường cao AH (H ∈ BC). Gọi O là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây sai ?
A. S A ⊥ A B C
B. O ∈ S H
C. S A H ⊥ S B C
D. S B C , A B C ^ = S B A ^
1.Cho hình chóp S.ABC có \(\Delta ABC\) vuông cân tại C có AC=a
\(SA\perp\left(ABC\right)\) và \(SA=a\sqrt{3}\)
a) Tính góc giữa \(SB\) và (ABC), SB và (SAC)
b) Tính góc giữa 2 mặt phẳng (SBC) và (ABC), (SAC) và (ABC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông (ABC) SA= a cân 3; AB=a
A: Chứng minh (SAB) vuông (SAC)
B: Gọi M là trung điểm của BC, chứng minh BC vuông góc vs SM
C: Tính góc giữa SC và (ABC
Bài 4. Cho hình chóp S.ABC , hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của AC, đáy ABC là tam giác vuông ở B, SA = 2a, AB = av3, BC = a. Tính góc (SH,(SAB)). Bài 5. Cho hình chóp S.ABCD, SA1(ABCD), đáy ABCD là hình vuông cạnh a, góc giữa mặt phăng (SBC) và (ABCD) bằng 30°. Tính góc (AD.(SCD)).
Cho hình chóp SABCD có đáy là hình thang vuông tại A và D. AB=2a, AD=DC=a. Kẻ AH vuông góc với SC (H thuộc SC). E là trung điểm của AB. Sa vuông góc với (ABCD) và SA=a căn 3. Tính góc giữa a)(SBC) và (ABCD) b)(SAD) và (SAC) c)(SBC) và (SCD)
Cho hình chóp S.ABC có SA vuông góc (ABC), đáy là ΔABC vuông tại B, AB=a, \(BC=a\sqrt{3}\), \(SA=\dfrac{a\sqrt{6}}{2}\). Tính góc((SAC);(SBC))
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=BC=a và SA=a. Góc giữa hai mặt phẳng (SAC) và (SBC) bằng
A. 60⁰.
B. 90⁰.
C. 30⁰.
D. 45⁰.