Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

LT

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, với ; AC=a2a2 BC a . Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt đáy (ABC) góc 600 . Tính khoảng cách từ B tới mặt phẳng (SAC) theo a biết mặt phẳng (SBC) vuông góc với đáy (ABC).

NL
16 tháng 5 2019 lúc 20:14

Bạn ghi lại số liệu, không dịch được số liệu bài toán

Bạn vào chỗ khoanh đỏ trong ô soạn thảo để gõ công thức, khá dễ sử dụng

Hỏi đáp Toán

Bình luận (4)
NL
16 tháng 5 2019 lúc 22:24

Gọi H là hình chiếu vuông góc của S lên (ABC) \(\Rightarrow H\in BC\)

Từ H lần lượt kẻ HM và HN vuông góc AB và AC

\(\Rightarrow\widehat{SMH}=\widehat{SNH}=60^0\Rightarrow HM=HN=\frac{SH}{tan60^0}\)

\(\Rightarrow\) Tứ giác \(HMAN\) là hình vuông \(\Rightarrow AH\) là phân giác \(\widehat{CAB}\) (đường chéo hình vuông đồng thời là phân giác)

\(\Rightarrow\frac{HC}{AC}=\frac{HB}{AB}\Rightarrow HC=\frac{1}{2}HB=\frac{1}{3}BC=\frac{a\sqrt{5}}{6}\)

\(tan\widehat{B}=\frac{AC}{AB}=\frac{1}{2}\Rightarrow cot\widehat{B}=2\Rightarrow sin\widehat{B}=\frac{1}{\sqrt{1+cot^2a}}=\frac{\sqrt{5}}{5}\)

\(\Rightarrow HM=HB.sin\widehat{B}=\frac{a}{3}\Rightarrow HN=HM=\frac{a}{3}\)

\(\Rightarrow SH=HM.tan60^0=\frac{a\sqrt{3}}{3}\)

\(BH\) cắt (SAC) tại C, mà \(BC=3HC\Rightarrow d\left(B;\left(SAC\right)\right)=3d\left(H;\left(SAC\right)\right)\)

\(\left\{{}\begin{matrix}AC\perp SH\\AC\perp HN\end{matrix}\right.\) \(\Rightarrow AC\perp\left(AHN\right)\)

Từ H kẻ \(HK\perp SN\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

\(\frac{1}{HK^2}=\frac{1}{SH^2}+\frac{1}{HN^2}\Rightarrow HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{3}}{6}\)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
TA
Xem chi tiết
PA
Xem chi tiết
TV
Xem chi tiết
AH
Xem chi tiết
LK
Xem chi tiết
BV
Xem chi tiết