Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

TT

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, canh bên SA,SB,SC đều tạo với đáy 1 góc 600.Tính thể tích của khối chóp S.ABC và khoảng cách từ điểm A đến mặt phẳng (SBC).

BC
13 tháng 8 2016 lúc 9:47

+)Gọi H là chân đường cao hạ từ A - -> BC 
Tam giác AHC vuông tại H nên 
AH = √(a² -a²/4) = a√3/2 
Diện tích tam giác ABC là S(ABC) = 1/2.AH.BC= 1/2.a²√3/2 
(dvdt) 
+)Từ S hạ SK ┴ AH , Kết hợp AH ┴ BC ta có SK ┴ (ABC) 
Hay SK là đường cao của hình chóp đều SABC 
+) Bài cho góc giữa các mặt bên với đáy là 60 độ nên 
góc giữa (SH,HK) = 60 độ 
Tam giác vuông SKH có SK = HK.tan(60) 
Tam giác vuông BKH có HK = a/2.tan(30) = a√3/6 
- - > SK = a√3/6.tan(60) = a/2 
Vậy V(SABC) =1/3.SK.S(ABC) = 1/3.a/2.1/2.a²√3/2 
= a³√3/24 (dvtt)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
TA
Xem chi tiết
TV
Xem chi tiết
HL
Xem chi tiết
TH
Xem chi tiết
PA
Xem chi tiết
TE
Xem chi tiết
DA
Xem chi tiết
AH
Xem chi tiết