Cho hình chóp S.ABC có đáy ABC là tam giác đều, cạnh a, SA vuông góc với mặt đáy và SA = 3a. Gọi M, N lần lượt là trung điểm của AB, SC. Khoảng cách giữa hai đường thẳng CM và AN bằng
A. 3 a 37 .
B. a 2 .
C. 3 a 37 74 .
D. a 4 .
Cho hình chóp SABC, đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy và S A = a . Gọi M, N lần lượt là trung điểm của các cạnh BC và CA. Khoảng cách giữa hai đường thẳng AM và SN bằng
A. a 4
B. a 17
C. a 17
D. a 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC), góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Gọi M là trung điểm của cạnh AB. Khoảng cách từ B đến mặt phẳng (SMC) bằng
A. a 3
B. a 39 13
C. a
D. a 2
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA= 3 a và vuông góc với mặt đáy. Gọi M là trung điểm cạnh SB (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng AM và SC bằng
A. 5 16
B. 11 16
C. 5 8
D. 3 8
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B ; A B = 3 a ; B C = 4 a . Cạnh bên SA vuông góc với mặt phẳng đáy. Góc tạo giữa SC và mặt phẳng đáy bằng 60 ° . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
A. a 3
B. 10 a 3 79
C. 5 a 3
D. 5 a 2
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a , SA=a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCMN bằng
A. a 3 3 12 .
B. a 3 3 48 .
C. a 3 3 24 .
D. a 3 3 16 .
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng
A. V = 3 a 3 3 50
B. V = 9 a 3 3 50
C. V = 8 a 3 3 75
D. V = 8 a 3 3 25
Cho hình chóp tam giác S.ABC có SA⊥(ABC), đáy ABC là tam giác đều cạnh a, cạnh bên SA = a. Gọi M là trung điểm cạnh SB. Tính góc giữa hai đường thẳng SA và CM
A. 90 0
B. 45 0
C. 60 0
D. 30 0
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt đáy và SA=2a. Gọi M là trung điểm của SC. Tính côsin của góc α là góc giữa đường thẳng BM và mặt phẳng (ABC).
A. cos α = 7 14
B. cos α = 2 7 7
C. cos α = 5 7
D. cos α = 21 7