PB

Cho hình chóp S.ABC có đáy ABC là tam giác đều, cạnh a, SA vuông góc với mặt đáy và SA = 3a. Gọi M, N lần lượt là trung điểm của AB, SC. Khoảng cách giữa hai đường thẳng CM và AN bằng

A.  3 a 37 .

B.  a 2 .

C.  3 a 37 74 .

D.  a 4 .

CT
3 tháng 9 2018 lúc 8:08

Đáp án A.

Phương pháp:

- Phương pháp tọa độ hóa.

- Công thức tính khoảng cách giữa hai đường thẳng trong không gian:

d Δ 1 ; Δ 2 = M 1 M 2 → . u 1 → ; u 2 → u 1 → ; u 2 → ,     M 1 ∈ Δ 1 ; M 2 ∈ Δ 2  

Cách giải:

Gắn hệ trục tọa độ (như hình vẽ): 

A 0 ; 0 ; 0 ,   B 0 ; a ; 0 ,   C a 3 2 ; a 2 ; 0 ,   S 0 ; 0 ; 3 a  

M, N lần lượt là trung điểm của AB, SC

⇒ M 0 ; a 2 ; 0 ,   N a 3 4 ; a 4 ; 3 a 2  

⇒ A N → = a 3 4 ; a 4 ; 3 a 2 ;     C M → = − a 3 2 ; 0 ; 0  

Đường thẳng AN có 1 VTCP u 1 → = 3 ; 1 ; 6 ,  

đi qua điểm A 0 ; 0 ; 0 .  

Đường thẳng CM có 1 VTCP u 1 → = 1 ; 0 ; 0 ,  đi qua điểm  A 0 ; a 2 ; 0 .

A M → = 0 ; a 2 ; 0 ,   u 1 → ; u 2 → = 0 ; 6 ; − 1  

d A N ; C M = A M → . u 1 → ; u 2 → u 1 → ; u 2 → = 0.0 + a 2 .6 + 0. − 1 0 2 + 6 2 + 1 2 = 3 a 37

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết