Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông (ABC) SA= a cân 3; AB=a
A: Chứng minh (SAB) vuông (SAC)
B: Gọi M là trung điểm của BC, chứng minh BC vuông góc vs SM
C: Tính góc giữa SC và (ABC
1.Cho hình chóp S.ABC có \(\Delta ABC\) vuông cân tại C có AC=a
\(SA\perp\left(ABC\right)\) và \(SA=a\sqrt{3}\)
a) Tính góc giữa \(SB\) và (ABC), SB và (SAC)
b) Tính góc giữa 2 mặt phẳng (SBC) và (ABC), (SAC) và (ABC)
Cho tứ diện SABC có SA vuông góc với mặt phẳng (ABC) và tam giác ABC vuông tại B. Trong mp(SAB), kẻ AM vuông góc với SB tại M. Trên cạnh SC lấy điểm N sao cho SM/SB = SN/SC .
Chứng minh rằng:
a) BC ⊥ (SAB), AM ⊥ (SBC)
b) SB ⊥ AN
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA=\(a\sqrt{2}\), AC=2a và SA⊥(ABCD). Tính góc giữa 2 mp (SBC) và (ABC)
Cho hình chóp S.ABC có SA vuông góc (ABC), đáy là ΔABC vuông tại B, AB=a, \(BC=a\sqrt{3}\), \(SA=\dfrac{a\sqrt{6}}{2}\). Tính góc((SAC);(SBC))
Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a Hình chiếu vuông góc của S lên (ABC )trùng với trung điểm H của cạnh BC biết tam giác SBC là tam giác đều tính số đo của góc giữa SA và (ABC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB =a, BC = a 3 .Cạnh SA vuông góc với mặt phẳng đáy và S A = 2 a 3 Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC
A. R = a
B. R = 3a
C. R = 4a
D. R = 2a
Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại C và SB vuông(ABC); biết AC=a\(\sqrt{2}\), BC=a; SB=2a
a.chứng minh AC \(\perp\)(SBC)
b.gọi BH là đường cao của tam giác SBC.Chứng minh SA \(\perp\)BH
c.Tính góc giữa SA và (ABC); SA và (SBC) ; SB và (SAC)