CT

Cho hình bình hành ABCD.Gọi M, N lần lượt là trung điểm của BC, CD. Hai đường thẳng AM, AN cắt BD tại E, F. Chứng minh rằng:

A) E, F lần lượt là trọng tâm của các tam giác ABC và ACD

B)EB=EF=DF

(Gợi ý: Gọi O là giao điểm của 2 đường chéo)

NT
11 tháng 10 2023 lúc 22:51

a: Gọi giao của AC và BD là O

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔADC có

AN,DO là trung tuyến

AN cắt DO tại F

Do đó: F là trọng tâm cuả ΔADC

Xét ΔABC có

AM,BO là trung tuyến

AM cắt BO tại E

Do đó: E là trọng tâm của ΔABC

b: E là trọng tâm của ΔABC

=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)

F là trọng tâm của ΔDAC

=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}\cdot BD\)

DF+FE+EB=DB

=>\(FE=DB-\dfrac{1}{3}DB-\dfrac{1}{3}DB=\dfrac{1}{3}DB\)

=>EB=EF=DF

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
BL
Xem chi tiết
TT
Xem chi tiết
TQ
Xem chi tiết
HP
Xem chi tiết
NP
Xem chi tiết
PB
Xem chi tiết
GH
Xem chi tiết
ND
Xem chi tiết