Hình bình hành ABCD có AM vuông góc với BC, AN vuông góc với DC. CMR:
a) Tam giác ADN đồng dạng với tam giác ABN
b) Tam giác MAN đồng dạng với tam giác ABC
c) Giả sử AC là đường chéo lớn của hbh ABCD, vẽ CE vuông góc với AB, CF vuông góc với AD. CMR: AB.AE+AD.AF=AC^2.
Cho tam giác ABC vuông tại A, có AB=6cm;BC=10cm và đường phân giác BD ( D thuộc cạnh AC). Kẻ DH vuông góc với BC ( H thuộc cạnh BC). a,Tính tỉ số AD/CD b,Nêu 2 cặp cạnh tam giác đồng dạng trên hình? c, Chứng minh AB.DC= HB.BC?
Cho hình bình hành ABCD có góc B là góc tù. Kẻ AH vuông góc với BD tại I, HK vuông góc với CD tại K. Gọi M là trung điểm của DK và N là trung điểm của BH. (cho biết S là diện tích) 1/ Chứng minh: tam giác ABN đồng dạng với tam giác HDM 2/ Kẻ NO vuông góc với AB tại O, Chứng minh: 3 điểm O, H, M thẳng hàng 3/ AN cắt BC tại E và cắt CD tại F. Trong trường hợp diện tích tam giác AHD/diện tích tam giác CEF=15/16. Tính tỷ số diện tích tam giác AHF/diện tích tam giác BNE. Giúp mình ý số 3 với ạ
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.Từ B kẻ đường thẳng // với AC;phân giác góc BAC cắt BC tại M và cắt đường thẳng AB tại N a ) Chứng mình tam giác BMN đồng dạng với tam giác CMA b ) chứng minh AB/AC=MN/AN C) từ N kẻ NE vuông góc với AC (E thuộc AC) NE cắt BC tại I tính BI
Cho tam giác ABC vuông tại A (AB<AC), đường trung tuyến Am. Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F. Kẻ AH vuông góc với BC (H thuộc BC), AH cắt FE tại I. Chứng minh rằng :
a.Góc BAM = góc ABM.
b. Góc ACB = góc AEF từ đó suy ra tam giác MBE đồng dạng với tam giác MFC.
c.AB.AE = AC.AF
d.S ABC/ S AFE =(AM/AI)^2
GIúp mình với nay mình thi rồi
Cho tam giác ABC vuông tại A và có đường cao AH.
a/ Chứng minh AHC đồng dạng với BAC và suy ra AH.BC=AB. AC
b/ Gọi CD là đường phân giác của góc ACB (D thuộc cạnh AB). CD cắt AH tại E. Chứng minh rằng: tam giác ACE đồng dạng với tam giác BCD.
c/ Gọi I là trung điểm của đoạn thẳng DE. Chứng minh rằng: AI vuông góc DE
Cho tam giác ABC có góc A bằng 90 độ,AB=6cm,BC=10cm,đường phân giác BM(M thuộc AC).Từ A hạ AH vuông góc BM cắt BC tại điểm K a)Chứng minh: tam giác AMB đồng dạng với tam giác HKB b)Tính AC,AM,BM c)Tính diện tích tam giác BHK d)Chứng minh: AK.BK bằng 2AM.BH