NB

cho hình bình hành abcd .gọi M N theo thứ tự là trung điểm của AB và CD a. chứng minh tứ giác bmdn là hình bình hành b.chứng minh góc amd=góc bnc c gọi i là trung điểm của ac chứng minh m,i,n là thẳng hàng

 

KL
22 tháng 12 2023 lúc 9:18

loading... a) Do M là trung điểm của AB (gt)

⇒ BM = AM = AB : 2

Do N là trung điểm của CD (gt)

⇒ CN = DN = CD : 2

Do ABCD là hình bình hành (gt)

⇒ AB = CD và AB // CD

⇒ BM = AB : 2 = CD : 2 = DN

Do AB // CD (cmt)

⇒ BM // DN

Tứ giác BMDN có:

BM // DN (cmt)

BM = DN (cmt)

⇒ BMDN là hình bình hành

b) Do BMDN là hình bình hành (cmt)

⇒ BN // DM

⇒ ∠AMD = ∠MBN (đồng vị) (1)

Do AB // CD (cmt)

⇒ ∠MBN = ∠BNC (so le trong) (2)

Từ (1) và (2) ⇒ ∠AMD = ∠BNC

c) Do ABCD là hình bình hành

I là trung điểm của AC (gt)

⇒ I là trung điểm của BD

Do BMDN là hình bình hành (cmt)

I là trung điểm của BD (cmt)

⇒ I là trung điểm của MN

⇒ M, I, N thẳng hàng

Bình luận (0)
DQ
12 tháng 11 2024 lúc 20:26

Alô

 

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
LH
Xem chi tiết