Chương I: VÉC TƠ

H24

Cho hình bình hành ABCD. Gọi I, F, K là các điểm xác định bởi:

\(\overrightarrow{AI}=\alpha\overrightarrow{AB};\overrightarrow{AF}=\beta\overrightarrow{AC};\overrightarrow{AK}=\gamma\overrightarrow{AD}\). Chứng minh điều kiện cần và đủ để I, F, K thẳng hàng là: \(\dfrac{1}{\beta}=\dfrac{1}{\alpha}+\dfrac{1}{\gamma}\). Biết rằng: \(\alpha.\beta.\gamma\ne0\)

NL
23 tháng 11 2018 lúc 22:29

Thay vì \(\alpha;\beta;\gamma\) khó gõ kí tự, mình chuyển thành \(a,b,c\) cho dễ, bạn tự thay lại.

Do ABCD là hbh \(\Rightarrow\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

- Chứng minh chiều thuận: I, F, K thẳng hàng \(\Rightarrow\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)

Do I, F, K thẳng hàng \(\Rightarrow\) tồn tại một số \(k\ne0\) để \(\overrightarrow{KF}=k.\overrightarrow{KI}\)

\(\Rightarrow\left(\overrightarrow{KA}+\overrightarrow{AF}\right)=k.\left(\overrightarrow{KA}+\overrightarrow{AI}\right)\Rightarrow\left(-c.\overrightarrow{AD}+b.\overrightarrow{AC}\right)=k\left(-c.\overrightarrow{AD}+a.\overrightarrow{AB}\right)\)

\(\Rightarrow\overrightarrow{AD}\left(ck-c\right)=k.a.\overrightarrow{AB}-b.\overrightarrow{AC}=ka.\overrightarrow{AB}-b.\overrightarrow{AB}-b.\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{AD}\left(ck-c+b\right)=\overrightarrow{AB}\left(ka-b\right)\) (1)

Do \(\overrightarrow{AD};\overrightarrow{AB}\) không cùng phương \(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}ck-c+b=0\\ka-b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{c-b}{c}\\k=\dfrac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\dfrac{c-b}{c}=\dfrac{b}{a}\Rightarrow1=\dfrac{b}{a}+\dfrac{b}{c}\Rightarrow\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\) (đpcm)

- Chứng minh chiều nghịch: \(\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\Rightarrow\) I, F, K thẳng hàng

\(\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\Rightarrow b=\dfrac{ac}{a+c}\)

\(\overrightarrow{FI}=\overrightarrow{FA}+\overrightarrow{AI}=-b.\overrightarrow{AC}+a.\overrightarrow{AB}=-b\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+a.\overrightarrow{AB}\)

\(\Rightarrow\overrightarrow{FI}=-\dfrac{ac}{a+c}\overrightarrow{AB}-\dfrac{ac}{a+c}\overrightarrow{AD}+a.\overrightarrow{AB}=\dfrac{a^2}{a+c}\overrightarrow{AB}-\dfrac{ac}{a+c}\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{FI}=\dfrac{a}{a+c}\left(a.\overrightarrow{AB}-c.\overrightarrow{AD}\right)\) (1)

Lại có \(\overrightarrow{KI}=\overrightarrow{KA}+\overrightarrow{AI}=-c.\overrightarrow{AD}+a.\overrightarrow{AB}=a.\overrightarrow{AB}-c.\overrightarrow{AD}\) (2)

Từ (1), (2) \(\Rightarrow\overrightarrow{FI}=\dfrac{a}{a+c}\overrightarrow{KI}\) ; mà \(\dfrac{a}{a+c}\) là hằng số \(\ne0\)

\(\Rightarrow F,I,K\) thẳng hàng (đpcm)

Vậy F, I, K thẳng hàng khi và chỉ khi \(\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
NP
Xem chi tiết
TY
Xem chi tiết
SN
Xem chi tiết
TP
Xem chi tiết
NH
Xem chi tiết
CM
Xem chi tiết
HA
Xem chi tiết
HH
Xem chi tiết