H24

Cho hình bình hành ABCD có BC = 2AB và góc A = 60. Gọi E, F theo thứ tự là trung điểm của BC, AD Về điểm I đối xứng với A qua B
a.Tứ giác ABEF là hình gì? Chứng minh

b.Tứ giác AIEF là hình gì? Chứng minh

c. Tứ giác BICD là hình gì? Chứng minh .

d Tính số đo góc AED

NT
9 tháng 10 2023 lúc 13:49

a: Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

mà BE=BA(\(=\dfrac{BC}{2}\))

nên ABEF là hình thoi

b: IB//CD

=>\(\widehat{IBE}=\widehat{BCD}=60^0\)

Xét ΔIBE có BI=BE và \(\widehat{IBE}=60^0\)

nên ΔIBE đều

=>\(\widehat{I}=60^0\)

Xét hình thang AIEF có

EF//AI

\(\widehat{EIA}=\widehat{FAI}\)

Do đó: AIEF là hình thang cân

c: Xét ΔABF có AB=AF và \(\widehat{A}=60^0\)

nên ΔABF đều

=>BF=AB

Xét ΔBAD có

BF là trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>BD vuông góc AI

Xét tứ giác BICD có

BI//CD

BI=CD

\(\widehat{DBI}=90^0\)

Do đó: BICD là hình chữ nhật

d: Xét ΔEAD có

EF là trung tuyến

\(EF=\dfrac{AD}{2}\)

Do đó: ΔEAD vuông tại E

=>\(\widehat{AED}=90^0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LA
Xem chi tiết
LA
Xem chi tiết
HB
Xem chi tiết
HB
Xem chi tiết
PV
Xem chi tiết
DL
Xem chi tiết
PH
Xem chi tiết
TX
Xem chi tiết