TN

Cho hình bình hành ABCD có AD=2AB, góc A = 60°.Gọi E,F làn lượt là trung điểm của BC và AD a, CM: AE vuông góc với BF b, CM: BFDC là hình thang cân c, lấy điểm M là điểm đối xứng của A qua B . cM: BMCN là hình chữ nhật .Suy ra M,E,D thẳng hàng

NT
29 tháng 10 2023 lúc 20:27

a:

\(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)
\(AB=CD=\dfrac{AD}{2}\)

Do đó: BE=EC=AF=FD=AB=CD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

Hình bình hành ABEF có BE=BA

nên ABEF là hình thoi

=>BF\(\perp\)AE
b: Xét ΔABF có AB=AF và \(\widehat{BAF}=60^0\)

nên ΔABF đều

=>\(\widehat{AFB}=60^0\)

\(\widehat{BFD}+\widehat{AFB}=180^0\)(hai góc kề bù)

=>\(\widehat{BFD}+60^0=180^0\)

=>\(\widehat{BFD}=120^0=\widehat{CDF}\)

Xét tứ giác BFDC có FD//BC

nên BCDF là hình thang

Hình thang BCDF có \(\widehat{BFD}=\widehat{CDF}\)

nên BCDF là hình thang cân

c:

ΔABF đều

=>BF=AF

=>\(BF=\dfrac{AD}{2}\)

Xét ΔBAD có

BF là đường trung tuyến

\(BF=\dfrac{AD}{2}\)

Do đó: ΔBAD vuông tại B

=>AB\(\perp\)BD

AB=CD

AB=BM

Do đó: CD=BM

Xét tứ giác BMCD có

BM//CD

BM=CD

Do đó: BMCD là hình bình hành

Hình bình hành BMCD có \(\widehat{MBD}=90^0\)

nên BMCD là hình chữ nhật

=>BC cắt MD tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của MD

=>M,E,D thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
TA
Xem chi tiết
LP
Xem chi tiết
DA
Xem chi tiết
VA
Xem chi tiết
MT
Xem chi tiết
NB
Xem chi tiết
YY
Xem chi tiết