a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC
Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
b: Xét tứ giác MBCP có
MB//CP
MB=CP
Do đó: MBCP là hình bình hành
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC
Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
b: Xét tứ giác MBCP có
MB//CP
MB=CP
Do đó: MBCP là hình bình hành
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB d) AE = 3KI
Cho hình bình hành ABCD O là giao của 2 đường chéo AC,BD từ O kẻ đường thẳng a cắt AB,CD lần lượt tại E,F kẻ đường thẳng b cắt AD,BC lần lượt tại G,H. CM EFGH là hình bình hành
1) Cho hình thang ABCD( AB > AD). Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD theo thứ tự M,N
a) CMR: OM = ON
b) CMR: DMBN là hình gì ? Vì sao ?
c) CMR: AN// CM
2) Cho tứ giác ABCD có M,N,P,Q lần lượt là trung điểm của AB,BC,CA,AD.
a) CMR: tứ giác MNPQ là hình bình hành
b) Gọi M trung điểm DB. biết AD=6, AB=8. Cho AM= 1/2 DB. Tính QM ?
3) Cho Hình bình hành ABCD( AB>AD) . Kẻ AE, CF lần lượt vuông góc vs BD tại E,F.
a) CMR: AEDF là hình bình hành
b) AE kéo dài cắt CD tại K, CF kéo dài cắt AB tại H. Chứng tỏ rằng AC, BD,HK đồng quy.
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F. Qua O vẽ đưòng thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
Cho hình bình hành ABCD có AB=2AD. gọi M,N lần lượt là trung điểm của AB,CD.
a) tứ giác BMNC là hình j? Vì sao
b) cm: DM=BN
c) AN cắt DM tại I, MB cắt BN tại K. Cm: AC,BD,MN,IK đồng quy tại 1 điểm
. Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F, vẽ đường thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
cho hình bình hành ABCD có hai đường chéo AC và BD cắt nhau taị O. đường thẳng d1 qua O cắt cạnh AB và CD lần lượt tại M và P,đường thẳng d2 qua O cắt cạnh BC và DA lần lượt tại N và Q. BIẾT rằng d1 vuông góc d2.
c/m:
a, tứ giác MNPQ là hình bình hành
b, tứ giác MNPQ là hình thoi.
bài 2:cho tam giác ABC cân tại A. kẻ Bx//AC, Cy// AB, sao cho 2 tia Bx và Cy cắt nhau tại D.
1, C/M tứ giác ABCD là hình thoi
2, các đường trung tuyến BM vàCN của tam giác ABC cắt nhau ở G. AG cắt BC tại O. c/m AO là đường cao của tam giác ABC.
3, C/M A,O,D thẳng hàng.
b) AC cắt BD tại O. Chứng minh E,O,F thẳng hàng.
c) Hình bình hành ABCD có điều kiện gì thì tứ giác DEBR là hình thoi
Giúp mik với mng ơi