PB

Cho hệ phương trình m x − y = 2 m 4 x − m y = m + 6 . Trong trường hợp hệ phương trình có nghiệm duy nhất (x; y), tìm hệ thức liên hệ giữa x, y không phụ thuộc vào m.

A. 2x + y + 3 = 0

B. 2x – y = 3

C. −2x + y = 3

D. 2x + y = 3

CT
5 tháng 5 2019 lúc 16:32

Ta có

m x − y = 2 m 4 x − m y = m + 6 ⇔ y = m x − 2 m 4 x − m m x − 2 m = m + 6 ⇔ y = m x − 2 m x m 2 − 4 = 2 m 2 − m − 6

Hệ phương trình có nghiệm duy nhất khi  m 2 − 4 ≠ 0 ⇔ m ≠ 2 ; − 2

Khi đó  x = 2 m 2 − m − 6 m 2 − 4 = 2 m + 3 m − 2 m − 2 m + 2 = 2 m + 3 m + 2

⇒ y = m . 2 m + 3 m + 2 − 2 m = − m m + 2 ⇒ x = 2 m + 3 m + 2 y = − m m + 2 ⇔ x = 2 − 1 m + 2 y = − 1 + 2 m + 2 ⇔ 2 x = 4 − 2 m + 2 y = − 1 + 2 m + 2 ⇒ 2 x   +   y   =   3

vậy hệ thức không phụ thuộc vào m là 2x + y = 3

Đáp án: D

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
NT
Xem chi tiết
KH
Xem chi tiết
VB
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết