Bài 3: Giải hệ phương trình bằng phương pháp thế

MP

Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\x+2y=2\end{matrix}\right.\) ( m là tham số và x,y là các ẩn số)

Tìm tất cả các giá trị nguyên của m để hệ phương trình có nghiệm (x,y) trong đó x,y là các số nguyên

NV
7 tháng 1 2021 lúc 13:48

Giải 

Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:

(m-1)(2-2y) + y =2

<=> ( 2m - 3)y= 2m-4 (3)

Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.

Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)

y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)

Vậy có hai giá trị m thỏa mãn:1,2.

 

Bình luận (1)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
TA
Xem chi tiết
CP
Xem chi tiết
QS
Xem chi tiết
AP
Xem chi tiết
BH
Xem chi tiết