Bài 4: Đường thẳng song song và đường thẳng cắt nhau

ND

Cho hàm số

(d) y=(m2-2)x+m-1

(d1)y=2x-3

(d2)y=-x-2

(d3)y=3x-2

(d4)y=4/5x-1/2

a) (d) // (d1)

b) (d) trùng với (d2)

c)(d) cắt (d3) tại điểm có hoành độ x=-1

d)(d) vuông góc với (d4)

NT
3 tháng 1 2021 lúc 13:49

a) Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)

b) Để (d) trùng với (d2) thì

\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\Leftrightarrow m=-1\)

c) Để (d) cắt (d3) thì 

\(m^2-2\ne3\)

\(\Leftrightarrow m^2\ne5\)

\(\Leftrightarrow m\notin\left\{\sqrt{5};-\sqrt{5}\right\}\)

Để (d) cắt (d3) tại một điểm có hoành độ x=-1 thì

Thay x=-1 vào hàm số \(y=3x-2\), ta được: 

\(y=3\cdot\left(-1\right)-2=-3-2=-5\)

Thay x=-1 và y=-5 vào hàm số \(y=\left(m^2-2\right)x+m-1\), ta được: 

\(\left(m^2-2\right)\cdot\left(-1\right)+m-1=-5\)

\(\Leftrightarrow2-m^2+m-1=-5\)

\(\Leftrightarrow-m^2+m-1+5=0\)

\(\Leftrightarrow-m^2+m+4=0\)

\(\Leftrightarrow m^2-m-4=0\)

\(\Leftrightarrow m^2-2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{17}{4}=0\)

\(\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2=\dfrac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}m-\dfrac{1}{2}=\dfrac{\sqrt{17}}{2}\\m-\dfrac{1}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{17}+1}{2}\left(nhận\right)\\m=\dfrac{1-\sqrt{17}}{2}\left(nhận\right)\end{matrix}\right.\)

d) Để (d) vuông góc với (d4) thì \(\left(m^2-2\right)\cdot\dfrac{4}{5}=-1\)

\(\Leftrightarrow m^2-2=-1:\dfrac{4}{5}=-1\cdot\dfrac{5}{4}=\dfrac{-5}{4}\)

\(\Leftrightarrow m^2=-\dfrac{5}{4}+2=\dfrac{-5}{4}+\dfrac{8}{4}=\dfrac{3}{4}\)

hay \(m\in\left\{\dfrac{\sqrt{3}}{2};-\dfrac{\sqrt{3}}{2}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
TV
Xem chi tiết
DD
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
HL
Xem chi tiết
DL
Xem chi tiết
DV
Xem chi tiết
PT
Xem chi tiết