Bài 2: Cực trị hàm số

H24

Cho hàm số y=x3-3x2-mx+2. Tìm m để hàm số có CĐ, CT và đường thẳng qua CĐ, CT tạo với hai trục tọa độ một tam giác vuông cân

NL
2 tháng 6 2021 lúc 18:48

\(y'=3x^2-6x-m\)

Hàm số có CĐ, CT khi \(y'=0\) có 2 nghiệm pb

\(\Rightarrow\Delta'=9+3m>0\Rightarrow m>-3\)

Tiến hành chia y cho y' và lấy phần dư ta được phương trình đường thẳng qua CĐ, CT có dạng:

\(y=-\left(\dfrac{2m}{3}+2\right)x-\dfrac{m}{3}+2\)

Do đường thẳng tạo với 2 trục 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}-\left(\dfrac{2m}{3}+2\right)=1\\-\left(\dfrac{2m}{3}+2\right)=-1\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{9}{2}< -3\left(loại\right)\\m=-\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
MN
Xem chi tiết
HL
Xem chi tiết
PH
Xem chi tiết