LD

Cho hàm số y=x2

1. Cho các hàm số y = x + 2 và y=-x + m ( với m là tham số) lần lượt có đồ thị là (d) và (d1). Tìm tất cả các giá trị của m để trên 1 mặt phẳng tọa độ các đồ thị của (P),(d) (d1) cùng đi qua một điểm 

LH
5 tháng 6 2021 lúc 0:36

G/s (P),(d),(d1) cùng đi qua một điểm

Gọi I(a,b) là giao điểm của (P),(d),(d1)

Có \(I\in\left(P\right),\left(d\right),\left(d1\right)\)\(\Rightarrow\left\{{}\begin{matrix}b=a^2\left(1\right)\\b=a+2\left(2\right)\\b=-a+m\left(3\right)\end{matrix}\right.\)

Từ (1);(2)\(\Rightarrow a^2=a+2\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-1\end{matrix}\right.\)

TH1: Tại \(a=2\Rightarrow b=a^2=4\)

Thay \(a=2;b=4\) vào (3) ta được:\(4=-2+m\) \(\Leftrightarrow m=6\)

TH2: Tại \(a=-1\Rightarrow b=a^2=1\)

Thay \(a=-1;b=1\) vào (3) ta được:\(1=1+m\) \(\Leftrightarrow m=0\)

Vậy m=6 hoặc m=0

Bình luận (0)
VX
5 tháng 6 2021 lúc 0:47

Phương trình hoành độ giao điểm của (d) và (P):

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)(*)

Ta có: \(a-b+c=1-\left(-1\right)+\left(-2\right)=0\)

Do đó phương trình (*) có 2 nghiệm phân biệt

\(x_1=-1;x_2=\dfrac{-c}{a}=2\)

\(x_1=-1\) thì \(y_1=x_1^2=\left(-1\right)^2=1\)

\(x_2=2\) thì \(y_2=x_2^2=2^2=4\)

Vậy (d) và (P) cắt nhau tại 2 điểm phân biệt \(A\left(-1;1\right);B\left(2;4\right)\)

Do đó các đồ thị của (P), (d) và \(\left(d_1\right)\)cùng đi qua 1 điểm 

\(\Leftrightarrow\left[{}\begin{matrix}A\in\left(d_1\right)\\B\in\left(d_1\right)\end{matrix}\right.\)               \(\Leftrightarrow\left[{}\begin{matrix}1=1+m\\4=-2+m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=6\end{matrix}\right.\)

Vậy khi m=0 hoặc m=6 thì các đồ thị của (P),(d) và cùng đi qua 1 điểm

-Chúc bạn học tốt-

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
MS
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết