§1. Hàm số

OO

Cho hàm số y=f(x), x\(\in\)R. C/m: Có thể biểu diễn f(x) = g1(x) + g2(x), \(\forall\)x\(\in\)R. Trong đó y = g1(x) là hàm số chẵn còn y=g2(x) là hàm số lẻ

NL
20 tháng 6 2019 lúc 23:24

Đề bài thiếu rồi bạn, cần hạn chế hàm \(f\left(x\right)\) vì hàm \(f\left(x\right)\) bất kì thì miền xác định D của nó cũng bất kì.

Nếu hàm \(f\left(x\right)\) có miền xác định ko đối xứng (ví dụ \(y=\sqrt{x}\)) thì không thể tách thành 2 hàm chẵn lẻ vì \(f\left(x\right)=g_1\left(x\right)+g_2\left(x\right)\) thì đương nhiên \(g_1\left(x\right)\)\(g_2\left(x\right)\) cùng miền xác định với \(f\left(x\right)\). Mà một hàm số có miền xác định không đối xứng thì không thể là hàm chẵn hay hàm lẻ.

Bình luận (0)