Bài 1: Sự đồng biến và nghịch biến của hàm số

NN

Cho hàm số y= x^4-2mx^2+m. Tìm m để hàm số có 3 điểm cực trị tạo thành 1 tam giác vuông cân

NL
1 tháng 8 2021 lúc 17:42

\(y'=4x^3-4mx=0\Rightarrow\left\{{}\begin{matrix}x=0\\x^2=m\end{matrix}\right.\)

Hàm có 3 cực trị khi \(m>0\)

Khi đó gọi 3 điểm cực trị là A; B; C với \(\left\{{}\begin{matrix}A\left(0;m\right)\\B\left(\sqrt{m};-m^2+m\right)\\C\left(-\sqrt{m};-m^2+m\right)\end{matrix}\right.\)

Tam giác ABC luôn cân tại A

Gọi H là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AH=\left|y_B-y_A\right|=m^2\\BC=\left|x_B-x_A\right|=2\sqrt{m}\end{matrix}\right.\)

Do tam giác vuông cân

\(\Rightarrow AH=\dfrac{1}{2}BC\Rightarrow m^2=\sqrt{m}\Rightarrow m=1\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TP
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
AN
Xem chi tiết