Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho các mệnh đề sau:
1. Nếu hàm số y = f x liên tục, có đạo hàm tới cấp hai trên a ; b , x 0 ∈ a ; b và f ' x 0 = 0 f ' ' x 0 ≠ 0 thì x0 là một điểm cực trị của hàm số.
2. Nếu hàm số y = f x xác định trên a ; b thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
3. Nếu hàm số y = f x liên tục trên a ; b thì hàm số có đạo hàm tại mọi x thuộc [a;b].
4. Nếu hàm số y = f x có đạo hàm trên a ; b thì hàm số có nguyên hàm trên a ; b
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
D. 4
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho f(x) là hàm liên tục trên đoạn 0 ; a thỏa mãn f x f a − x = 1 f x > 0 , ∀ x ∈ 0 ; a và ∫ 0 a d x 1 + f x = b a c , trong đó b, c là hai số nguyên dương và b c là phân số tối giản. Khi đó b + c có giá trị thuộc khoảng nào dưới đây?
A. 11 ; 22
B. 0 ; 9
C. 7 ; 21
D. 2017 ; 2020
Cho hàm số f x = 3 x − 4 + x + 1 .2 7 − x − 6 x + 3 . Giả sử m 0 = a b ( a , b ∈ ℤ , a b là phân số tối giản) là giá trị nhỏ nhất của tham số thực m sao cho phương trình f 7 − 4 6 x − 9 x 2 + 2 m − 1 = 0 có số nghiệm nhiều nhất. Tính giá trị của biểu thức P = a + b 2
A. P = -1
B. P = 7
C. P = 11
D. P = 9
F x là một nguyên hàm của hàm số f x = 3 x 2 + 1 2 x + 1 . Biết F 0 = 0 , F 1 = a + b c ln 3 , trong đó a, b, c là các số nguyên dương và b c là phân số tối giản. Khi đó giá trị biểu thức a + b + c bằng
A. 4
B. 3
C. 12
D. 9
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f x = x - 6 x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b+ c
A. S = 4
B. S = -2
C. S =-22
D. S = 5
Cho hàm số y = f x = x 3 - 2 m - 1 x 2 + 2 - m x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a + b + c
A. a + b + c = 11
B. a + b + c = 8
C. a + b + c = 10
D. a + b + c = 5
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)