TT
Cho hàm số y = 2x và y = -3x +5 Tìm tọa độ giao điểm M của hai hàm số nói trên. Gọi A, B lần lượt là giao điểm của đường thẳng y=-3x+5 với trục hoành và trục tung. Tính diện tích tam giác OAB và tam giác OMA
NT
15 tháng 11 2023 lúc 13:45

a: Phương trình hoành độ giao điểm là:

2x=-3x+5

=>5x=5

=>x=1

Thay x=1 vào y=2x, ta được:

\(y=2\cdot1=2\)

Vậy: M(1;2)

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-3x+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy: A(5/3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-3\cdot0+5=5\end{matrix}\right.\)

Vậy: B(0;5)

O(0;0); A(5/3;0); B(0;5)

=>\(OA=\sqrt{\left(\dfrac{5}{3}-0\right)^2+\left(0-0\right)^2}=\dfrac{5}{3}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(5-0\right)^2}=5\)

Vì A,B là giao điểm của (d): y=-3x+5 với trục Ox và trục Oy nên ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{5}{3}\cdot5=\dfrac{25}{6}\)

M(1;2); O(0;0); A(5/3;0)

\(OA=\sqrt{\left(\dfrac{5}{3}-0\right)^2+\left(0-0\right)^2}=\dfrac{5}{3}\)

\(OM=\sqrt{\left(1-0\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

\(MA=\sqrt{\left(\dfrac{5}{3}-1\right)^2+\left(0-2\right)^2}=\dfrac{2\sqrt{10}}{3}\)

Xét ΔOAM có \(cosAOM=\dfrac{OA^2+OM^2-AM^2}{2\cdot OA\cdot OM}=\dfrac{\sqrt{5}}{5}\)

=>\(sinAOM=\sqrt{1-\left(\dfrac{\sqrt{5}}{5}\right)^2}=\dfrac{2}{\sqrt{5}}\)

\(S_{AOM}=\dfrac{1}{2}\cdot OA\cdot OM\cdot sinAOM\)

\(=\dfrac{1}{2}\cdot\sqrt{5}\cdot\dfrac{5}{3}\cdot\dfrac{2}{\sqrt{5}}=\dfrac{5}{3}\)

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PL
Xem chi tiết
HA
Xem chi tiết