Đáp án C.
Ta có y = 2 3 x - 9 , x ≠ ± 3 - 1 9 , x = ± 3 ⇒ Hàm số không liên tục tại điểm x = 3.
Đáp án C.
Ta có y = 2 3 x - 9 , x ≠ ± 3 - 1 9 , x = ± 3 ⇒ Hàm số không liên tục tại điểm x = 3.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Xét các mệnh đề sau:
(1) Nếu hàm số f x có đạo hàm tại điểm x = x 0 thì f x liên tục tại điểm đó.
(2) Nếu hàm số f x liên tục tại điểm x = x 0 thì f x có đạo hàm tại điểm đó.
(3) Nếu f x không liên tục x = x 0 thì chắc chắn f x không có đạo hàm tại điểm đó.
(4) Nếu f x có đạo hàm tại x 0 khi và chỉ khi f x liên tục tại x 0
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?
A. 2
B. 1
C. 4
D. 3
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho các mệnh đề sau:
1. Nếu hàm số y = f x liên tục, có đạo hàm tới cấp hai trên a ; b , x 0 ∈ a ; b và f ' x 0 = 0 f ' ' x 0 ≠ 0 thì x0 là một điểm cực trị của hàm số.
2. Nếu hàm số y = f x xác định trên a ; b thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
3. Nếu hàm số y = f x liên tục trên a ; b thì hàm số có đạo hàm tại mọi x thuộc [a;b].
4. Nếu hàm số y = f x có đạo hàm trên a ; b thì hàm số có nguyên hàm trên a ; b
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
D. 4
Cho hàm số f (x) liên tục trên ℝ và f ' ( x ) = ( x - 1 ) 2 ( x - 3 ) Mệnh đề nào dưới đây đúng?
A. Hàm số không có cực trị
B. Hàm số có hai điểm cực trị
C. Hàm số có một điểm cực đại
D. Hàm số có đúng một điểm cực trị
Cho hàm số y=f(x) liên tục trên R, có đạo hàm f ' ( x ) = ( x - 1 ) ( x 2 - 2 ) ( x 4 - 4 ) . Mệnh đề nào sau đây là đúng?
A. Đồ thị hàm số f(x) có 3 điểm cực trị.
B. Hàm số f(x) đồng biến trên khoảng ( - 2 ; 2 )
C. Hàm số f(x) đạt cực tiểu tại x=1
D. Hàm số f(x) đạt cực tiểu tại x = 2
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau ?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0
(2) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = f " x 0 = 0 thì điểm x 0 không là điểm cực trị của hàm số y = f x
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f(x)
(4) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = 0 , f " x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f(x)
A. 1
B. 2
C. 0
D. 3
Cho hàm số y = f(x) có đạo hàm và liên tục trên R. Biết rằng đồ thị hàm số y = f'(x) như hình 2 dưới đây.
Lập hàm số g x = f x − x 2 − x . Mệnh đề nào sau đây đúng?
A. g(-1) = g(1)
B. g(1) = g(2)
C. g(1) > g(2)
D. g(-1) > g(1)
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ và f(1)=1,f(-1)=-1/3 Đặt g x = f 2 x - 4 f x Đồ thị của hàm số y=f‘(x) là đường cong ở hình bên. Mệnh đề nào sau đây đúng?
A. m i n ℝ g x = - 3
B. m a x ℝ g x = - 3
C. m i n ℝ g x = 13 9
D. m a x ℝ g x = 13 9
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên khoảng (0;+∞) và có f(3)=2/3, f ' x = x + 1 f x . Mệnh đề nào sau đây đúng?
A. 2613 < f 2 8 < 2614
B. 2618 < f 2 8 < 2619
C. 2614 < f 2 8 < 2615
D. 2616 < f 2 8 < 2617