Ôn tập chương 2: Hàm số bậc nhất

PT

cho hàm số (P): y=ax2

a) tìm hệ số a biết đồ thị (P) đi qua điểm A \(\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\)

b) viết pt đường thẳng (d), biết đồ thị (d) song song với đường thẳng y=-2x-1 và tiếp xúc với (P)

NT
13 tháng 5 2017 lúc 11:32

Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:

\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)

\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)

Khi đó hàm số (p) có dạng: \(y=-x^2\)

Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)

Vì (d) song song với đường thẳng \(y=-2x-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)

Xét phương trình hoành độ tiếp điểm của (p) và (d) :

\(-x^2=-2x+b\)

\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)

Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)

Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )

Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)

Bình luận (0)
TD
13 tháng 5 2017 lúc 11:34

Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:

\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)

Vậy hệ số a của (P) là -1

b,Giả sử pt đường thẳng (d) có dạng y=ax+b

Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:

\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Khi đó phương trình đường thẳng (d) trở thành y=-2x+b

Ta có phương trình hoành độ giao điểm của (d) và (P) là

\(-x^2+2x-b=0\) (*)

Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)

Vậy phương trình đường thẳng (d) là y=-2x+1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
CC
Xem chi tiết