Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số f(x) xác định với mọi x khác 0, nếu:
\(f\left(1\right)=1\)
\(f\left(\dfrac{1}{x}\right)=\dfrac{1}{x^2}f\left(x\right)\)
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
với \(x_1,x_2,x_1+x_2\) khác 0
Chứng minh rằng: \(f\left(\dfrac{5}{7}\right)=\dfrac{5}{7}\)
cho hàm số y =f(x) =\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^{2^{ }}-1\end{matrix}\right.\)
khi x< 0 ; khi 0 ≤ x ≤ 2 ; khi x>2
a. Tìm tập xác định của hàm số.
b. Tính f(-1), f(0), f(1), f(2), f(3).
1, Hàm số y = f(x) được cho bởi công thức : y = 3x^2 - 7 .
a, Tính f(1) ; f(0) ; f(5) .
b, Tìm các giá trị của x tương ứng với các giá trị của y lần lượt là : -4 ; 5 ; 20 ; -6_2/3 .
Help me !
Bài 11. Chứng minh rằng các hàm số sau đây luôn đồng biến với mọi số thực m ?
a: \(f\left(x\right)=\left(m^2+1\right)x+2m+1\)
b: \(f\left(x\right)=\dfrac{mx-1}{x+m}\)
Bài 1. Cho hàm số y= f(x)= {-2(x2 + 1) khi x ≤ 1 Tính f(1);f(2),f(√2 phần 2);f(√2)
{4√x-1 khi x > 1
Bài 2.Cho hàm số y= f(x)= { √-3x+8 khi x < 2 Tính f(-3);f(2);f(1),f(9)
{√x+7 khi x ≥ 2
cho hàm số f(x) xác định với mọi x thỏa mãn f(X) +2f(1/x) = X^2 tính f(2019)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
1, Cho đa thức f(x) = \(ax^2 + bx^2\)
Xác định a, b để f(x) - f(x-1) = x với mọi x
Từ đó suy ra công thức tính tổng 1+2+...+n ( với n là số nguyên dương)
Cho hàm số :
y = √(4 - x2) +1/√(x+m).Tìm giá trị của m để hàm số xác định với mọi x thuộc [ 0;1]