PB

Cho hàm số f(x) xác định và có đạo hàm f'(x) liên tục trên đoạn 1 ; 3 ,   f x ≠ 0  với mọi x ∈ 1 ; 3 , đồng thời f ' x 1 + f x 2 = f x 2 x − 1 2   v à   f 1 = − 1 . Biết rằng ∫ 1 3 f x d x = a ln 3 + b a , b ∈ ℤ , tính tổng S = a + b 2 .  

A. S = 2

B. S = 0

C. S = 4

D. S = -1

CT
18 tháng 7 2017 lúc 12:39

⇒ ∫ 1 x f ' x 1 + f x 2 f x 4 d x = ∫ 1 x x − 1 2 d x , ∀ x ∈ 1 ; 3 ⇔ ∫ 1 x 1 f x 4 + 2 f x 3 + 1 f x 2 d f x = x − 1 3 3 x 1 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x x 1 = x − 1 3 3 − 0 3 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x − − 1 3 f 1 3 − 2 2 f 1 2 − 1 f 1 = x − 1 3 3 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x − 1 3 − 1 + 1 = x − 1 3 3 ⇔ − 1 3 f x 3 − 2 2 f x 2 − 1 f x = x − 1 3 + 1 3 ⇔ 1 3 − 1 f x 3 − − 1 f x 2 + − 1 f x = 1 3 x 3 − x 2 + x   ( * )

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết