Cho hàm số f(x) có đạo hàm không âm trên [0;1] thỏa mãn ( [ f ( x ) ] 2 [ f ' ( x ) ] 2 ) e 2 x = 1 + [ f ( x ) ] 2 và f(x)> 0 với ∀x∈[0;1], biết f(0)=1. hãy chọn khẳng định đúng trong các khẳng định sau
A. 5 2 <f(1)< 3
B. 3<f(1)< 7 2
C. 2<f(1)< 5 2
D. 3 2 <f(1)< 2
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=1 và ( f ' ( x ) ) 2 + 4 ( 6 x 2 - 1 ) f ( x ) = 40 x 6 - 44 x 4 + 32 x 2 - 4 , ∀ x ∈ [ 0 ; 1 ] . Tích phân ∫ 0 1 f ( x ) d x bằng
A. 23 15
B. - 17 15
C. 13 15
D. - 7 15
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn [ f ' ( x ) ] 2 + f ( x ) f '' ( x ) ≥ 1 , ∀ x ∈ [ 0 ; 1 ] và f 2 ( 0 ) + f ( 0 ) . f ' ( 0 ) = 3 2 . Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 ( x ) d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ] d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1], f(x) và f' (x) đều nhận giá trị dương trên đoạn [0;1] và thỏa mãn f(0)=2, ∫ 0 1 f ' ( x ) . [ f ( x ) ] 2 + 1 ] dx = 2 ∫ 0 1 f ' ( x ) . f ( x ) dx . Tính ∫ 0 1 [ f ( x ) ] 3 dx ?
A. 15/4.
B. 15/2.
C. 17/2.
D. 19/2.
Cho hàm số y=f(x) có đạo hàm liên tục đoạn [0;1] thỏa mãn f(0)=0,f(1)=1 và ∫ 0 1 1 + x 2 [ f ' ( x ) ] 2 d x = 1 l n 2 . Tích phân ∫ 0 1 f ( x ) 1 + x 2 d x bằng
A. 1 2 ln 2 1 + 2 .
B. 2 - 1 2 ln 2 1 + 2 .
C. 1 2 ln 1 + 2 .
D. 2 - 1 ln 1 + 2 .
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số f (x) nhận giá trị dương, có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) thỏa mãn 2 f ' ( x ) ( f ( x ) ) 2 = f ( x ) ( x + 2 ) x 3 , ∀ x > 0 và f ( 1 ) = 1 3 . Tích phân ∫ 1 2 1 ( f ( x ) ) 2 d x bằng
A. 11 2 +ln2
B. - 1 2 +ln2
C. 3 2 +ln2
D. 7 2 +ln2
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0, ∫ 0 1 f ' ( x ) 2 d x = 7 và ∫ 0 1 x 2 f x d x = 1 3 . Tích phân ∫ 0 1 f ( x ) d x bằng
A. 7 5
B. 1
C. 7 4
D. 4