Cho hàm số f(x) có đạo hàm liên tục trên [2;5] đồng thời f(2)=-1, f(5)=3. Tính ∫ 2 5 f ' ( x ) d x
A. -3
B. 4
C. 10
D. 3
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f ( x ) = a ( x + 1 ) 3 + b x e x , biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 .
Tính S=a+b
A. S=10
B. S=11
C. S=6
D. S=17
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là
A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [a;b] và f (a)= - 2 ; f (b) = - 4 Tính T = ∫ a b f ' x dx
A. T= -6
B. T =2
C. T= 6
D. T= -2
Biết F (x) là một nguyên hàm của hàm số f ( x ) = 10 x 3 - 7 x + 2 2 x - 1 thỏa mãn F(1) = 5. Giả sử rằng F(3) = a + b 5 , trong đó a , b là các số nguyên. Tính tổng bình phương của a và b.
A. 121
B. 73
C. 265
D. 361
Cho hàm số f (x) liên tục và có đạo hàm trên 1 2 ; 1 thỏa mãn f ' (x) = 1 x x - 2 . Biết f(1) = 1, f( = ln 1 a ln 3 + b , ( a , b ∈ ). Tổng a + b bằng
A. 2
B. 3
C. - 2
D. - 3
Cho hàm số f(x) có đạo hàm trên đoạn [2;5], f(2)=9 và f(5)=3. Tính I = ∫ 2 5 f ' ( x ) d x
A. I=6
B. I=12
C. I=-6
D. I=-12
Cho các số thực a, b khác 0. Xét hàm số f ( x ) = a ( x + 1 ) 3 + b x e x với mọi x khác -1. Biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 . Tính a 2 + b 2 .
A. 42
B. 72
C. 68
D. 10