Ôn tập chương 2: Hàm số bậc nhất

PH

Cho hai hàm số y=x^2 (dm) và y=(m-1)x +m+1 có đồ thị là P (m là tham số). Tìm m nguyên dương để (dm) cắt (P) tại điểm có tọa độ nguyên

AH
7 tháng 3 2023 lúc 19:03

Lời giải:
PT hoành độ giao điểm: 
$x^2-(m-1)x-m-1=0(*)$

Để $(P)$ và $(dm)$ cắt nhau tại 1 điểm có tọa độ nguyên  thì PT $(*)$ phải có nghiệm nguyên

Điều này xảy ra khi $\Delta=(m-1)^2+4(m+1)=a^2$ với $a$ là số tự nhiên 

$\Leftrightarrow m^2+2m+5=a^2$

$\Leftrightarrow (m+1)^2+4=a^2$

$\Leftrightarrow 4=(a-m-1)(a+m+1)$

Vì $a+m+1>0$ và $a+m+1> a-m-1$ với mọi $a$ tự nhiên, $m$ nguyên dương nên:

$a+m+1=4; a-m-1=1$

$\Rightarrow m=\frac{1}{2}$ (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện đề bài.

Bình luận (0)

Các câu hỏi tương tự
JP
Xem chi tiết
KM
Xem chi tiết
H24
Xem chi tiết
CX
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
AC
Xem chi tiết
H24
Xem chi tiết
JP
Xem chi tiết