LN

cho hai đường tròn C : x^2 + y^2 = 1 và Cm : x^2 + y^2 -2(m+1)x + 4my -5 = 0. Xác định m để Cm tiếp xúc với C

NL
13 tháng 2 2022 lúc 16:07

Đường tròn (C) tâm \(I\left(0;0\right)\) bán kính R=1

Đường tròn \(\left(C_m\right)\) tâm \(I'\left(m+1;-2m\right)\) bán kính \(R'=\sqrt{5m^2+2m+6}\)

Ta có: \(II'=\sqrt{\left(m+1\right)^2+\left(2m\right)^2}=\sqrt{5m^2+2m+1}\)

Hai đường tròn tiếp xúc nhau khi:

\(\left[{}\begin{matrix}II'=R+R'\\II'=\left|R-R'\right|\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}+1\left(vn\right)\\\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}-1\end{matrix}\right.\)

\(\Rightarrow\sqrt{5m^2+2m+1}+1=\sqrt{5m^2+2m+6}\)

\(\Leftrightarrow\sqrt{5m^2+2m+1}=2\) 

\(\Leftrightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{5}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
KT
Xem chi tiết
MC
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
HA
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết