Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp là điểm J(4;0) và phương trình hai đường thẳng lần lượt chứa đường cao và đường trung tuyến từ đỉnh A của tam giác ABC là d 1 : x + y – 2 = 0 và d 2 : x + 2 y - 3 = 0 . Tìm tọa độ điểm C, biết B có tung độ dương.
A. C(3;-3).
B. C(7;1).
C. C(1;1).
D. C(-3;-9).
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
a) Cho tam giác ABC có C(-1;-2) đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình 5x+y-9=0 và x+3y-5=0. Tìm tọa độ A, B
b) Cho đường thẳng a: x-2y-3=0 và b: x+y+1=0. Tìm tọa độ điểm M trên a sao cho khoảng cách từ M đến b là 1/ căn 2
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình x+y-1=0 và đường tròn (C): ( x - 3 ) 2 + ( y - 1 ) 2 = 1 . Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ v → = 4 ; 0 cắt đường tròn (C) tại hai điểm A x 1 ; y 1 và B x 2 ; y 2 . Giá trị x 1 + x 2 bằng
A. 5
B. 8
C. 6
D. 7
Trong không gian Oxyz, cho tam giác ABC có A(2;3;3), phương trình đường trung tuyến kẻ từ B là x - 3 - 1 = y - 3 2 = z - 2 - 1 , phương trình đường phân giác trong của góc C là x - 2 2 = y - 4 - 1 = z - 2 - 1 . Đường thẳng BC có một vectơ chỉ phương là
A. u → = 2 ; 1 ; - 1
B. u → = 1 ; 1 ; 0
C. u → = 1 ; - 1 ; 0
D. u → = 1 ; 2 ; 1
Trong không gian Oxyz, cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Đường thẳng AB có vecto chỉ phương là :
A. u 3 → 2 ; 1 ; − 2
B. u 2 → 1 ; − 1 ; 0
C. u 4 → 0 ; 1 ; − 1
D. u 1 → 1 ; 2 ; 1
Trong không gian Oxyz, cho tam giác ABC với A(2;3;3), đường trung tuyến kẻ từ đỉnh B là x - 3 - 1 = y - 3 2 = z - 2 - 1 , phương trình đường phân giác trong góc C là x - 2 2 = y - 4 - 1 = z - 2 - 1 . Đường thẳng AB có một véctơ chỉ phương là
A. u 1 → 0 ; 1 ; - 1
B. u 2 → 2 ; 1 ; - 1
C. u 3 → 1 ; 2 ; 1
D. u 4 → 1 ; - 1 ; 0
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Cho hàm số y = x + 1 x − 2 Số các giá trị tham số m để đường thẳng y = m + x luôn cắt đồ thị hàm số tại hai điểm phân biệt A, B sao cho trọng tâm tam giác OAB nằm trên đường tròn x 2 + y 2 − 3 y = 4 là
A. 1
B. 0
C. 3
D. 2