a) Thu gọn và sắp xếp:
\(A\left(x\right)=\left(3x^6-3x^6\right)-x^4+\left(3x^3-3x^3+x^3\right)+5=-x^4+x^3+5\)
\(B\left(x\right)=2x^5+\left(x^4-x^4\right)-2x^3+x-1=2x^5-2x^3+x-1\)
b) \(A\left(x\right)+B\left(x\right)=-x^4+x^3+5+2x^5-2x^3+x-1=2x^5-x^4-x^3+x+4\)
\(A\left(x\right)-B\left(x\right)=-x^4+x^3+5-\left(2x^5-2x^3+x-1\right)=-2x^5-x^4+3x^3-x+6\)
a, \(A\left(x\right)=-x^4+x^3+5;B\left(x\right)=2x^5-2x^3+x-1\)
b, \(A\left(x\right)+B\left(x\right)=2x^5-x^4-x^3+x+4\)
\(A\left(x\right)-B\left(x\right)=-2x^5-x^4+3x^3-x+6\)
a)
Thu gọn: \(\left\{{}\begin{matrix}A\left(x\right)=\left(3x^3-3x^3+x^3\right)-x^4+\left(-3x^6+3x^6\right)+5=x^3-x^4+5\\B\left(x\right)=\left(x^4-x^4\right)+2x^5-2x^3+x-1=2x^5-2x^3+x-1\end{matrix}\right.\)
Sắp xếp: \(\left\{{}\begin{matrix}A\left(x\right)=-x^4+x^3+5\\B\left(x\right)=2x^5-2x^3+x-1\end{matrix}\right.\)
b)
\(A\left(x\right)+B\left(x\right)=-x^4+x^3+5+2x^5-2x^3+x-1=-x^4-x^3+4+2x^5+x\)
\(A\left(x\right)-B\left(x\right)=-x^4+x^3+5-2x^5+2x^3-x+1=-x^4+3x^3+6-2x^5-x\)
a A(x)=-x4+x3+5
B(x)=2x5-2x3+x-1
b A +B=-x4+x3+5+2x5-2x3+x-1
=2x5-x4-x3+x+4
A-B=-x4+x3+5-(2x5-2x3+x-1)
=-x4+x3+5+2x5+2x3-x+1
=2x5-x4+3x3-x+6