a: \(B=\dfrac{x^2+4}{x^2-4}-\dfrac{2}{x-2}\)
\(=\dfrac{x^2+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}\)
\(=\dfrac{x^2+4-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
b: \(P=A\cdot B=\dfrac{x}{x+2}\cdot\dfrac{x+2}{x-2}=\dfrac{x}{x-2}\)
Để P là số nguyên thì \(x⋮x-2\)
=>\(x-2+2⋮x-2\)
=>\(2⋮x-2\)
=>\(x-2\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{3;1;4;0\right\}\)