TL

Cho góc xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Từ A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, từ B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. AM cắt BN tại K. Chứng minh:

a) \(\Delta AKN\) = \(\Delta BKM\)

b) OK là phân giác của góc AOB

NT
5 tháng 12 2023 lúc 18:02

a: Xét ΔOAM vuông tại A và ΔOBN vuông tại B có

OA=OB

\(\widehat{AOB}\) chung

Do đó: ΔOAM=ΔOBN

=>\(\widehat{OMA}=\widehat{ONB}\) và OM=ON

Ta có: OA+AN=ON

OB+BM=OM

mà OA=OB và ON=OM

nên AN=BM

Xét ΔKAN vuông tại A và ΔKBM vuông tại B có

KA=KB

\(\widehat{KNA}=\widehat{KMB}\)

Do đó: ΔKAN=ΔKBM

b: ΔKAN=ΔKBM

=>KA=KB

Xét ΔOAK vuông tại A và ΔOBK vuông tại B có

OK chung

OA=OB

Do đó: ΔOAK=ΔOBK

=>\(\widehat{AOK}=\widehat{BOK}\)

=>OK là phân giác của \(\widehat{AOB}\)

Bình luận (1)