TL

cho góc xoy, trên tia Ox lấy 2 điểm A,B trên tia Oy lấy 2 điểm C,D sao cho OA bằng OC OB bằng CD

a) chứng minh tam giác OAD bằng tam giác OCB

b) chứng minh tam giác IAB bằng tam giác ICD

c) chứng minh OI là tia phân giác góc O

NT
12 tháng 1 2024 lúc 18:24

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC};AD=CB\)
Ta có: \(\widehat{IAB}+\widehat{DAO}=180^0\)(hai góc kề bù)

\(\widehat{ICD}+\widehat{OCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{IAB}=\widehat{ICD}\)

Ta có: OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: Ta có: ΔIAB=ΔICD

=>IB=ID

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>\(\widehat{xOI}=\widehat{yOI}\)

=>OI là phân giác của góc xOy

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
TC
Xem chi tiết
PT
Xem chi tiết
VT
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
HY
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết