Ta có:
\(cos^2x+sin^2x=1\Leftrightarrow sinx=\sqrt{1-cos^2x}=\sqrt{1-\left(-\dfrac{1}{2}\right)^2}=\sqrt{1-\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow tanx=\dfrac{sinx}{cosx}=\dfrac{\dfrac{\sqrt{3}}{2}}{-\dfrac{1}{2}}=-\sqrt{3}\)
Ta tính được S:
\(S=4\cdot\left(\dfrac{\sqrt{3}}{2}\right)^2+8\cdot\left(-\sqrt{3}\right)^2=27\)
\(4sin^2x+8tan^2x=4\left(1-cos^2x\right)+\dfrac{8sin^2x}{cos^2x}\\ =4\left(1-cos^2x\right)+\dfrac{8\left(1-cos^2x\right)}{cos^2x}=4\left[1-\left(-\dfrac{1}{2}\right)^2\right]+\dfrac{8\left[1-\left(-\dfrac{1}{2}\right)^2\right]}{\left(-\dfrac{1}{2}\right)^2}=27\)