Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)
\(\frac{1}{c}=\frac{b+a}{2ab}\)
suy ra \(2ab=c\left(b+a\right)\)
\(2ab=cb+ca\)
suy ra \(ab+ab=cb+ca\)
suy a \(ab-cb=ca-ab\)
suy ra \(b\left(a-c\right)=a\left(c-b\right)\)
suy ra \(\frac{a}{b}=\frac{a-c}{c-b}\left(Đpcm\right)\)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{b+a}{2ab}\right)\)
\(\frac{1}{c}=\frac{b+a}{2ab}\)
\(\Rightarrow2ab=c\left(b+a\right)\)
\(2ab=cb+ca\)
\(\Rightarrow ab+ab=cb+ca\)
\(\Rightarrow ab-cd=ca-ab\)
\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
\(NGUY\text{ỄN}HUYHO\text{ÀNG}NH\text{ÁI}H\text{Ả}EM\)