Cho một elip (E) : \(x^2+4y^2=16\)
a) Xác định tọa độ các tiêu điểm và các đỉnh của elip (E)
b) Viết phương trình đường thẳng \(\Delta\) đi qua điểm \(M\left(1;\dfrac{1}{2}\right)\) và có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;2\right)\)
c) Tìm tọa độ các giao điểm A và B của đường thẳng \(\Delta\) và elip (E). Chứng minh MA = MB
Trong hệ tọa độ Oxy, khoảng cách từ đường thẳng \(\Delta:3x-y-11=0\) đến đường thẳng \(\Delta':3x-y-1=0\) bằng:
\(A,\dfrac{6\sqrt{10}}{5}\)
\(B,2\)
\(C,-\sqrt{10}\)
\(D,\sqrt{10}\)
Trong một mặt phẳng Oxy cho điểm M(6;0) và đường thẳng \(\left(\Delta\right)\) : x+2y-9=0
a,Tính khoảng cách từ M đến \(\left(\Delta\right)\)
b, Viết phương trình đường tròn tâm M và tiếp xúc với \(\left(\Delta\right)\)
1. Trong mặt phẳng toạ độ oxy, cho 2 đường thẳng delta :x+2y+4=0 và d: 2x-y+3=0. Đường tròn tâm I thuộc d cắt Ox tại A và B, cắt trục Oy tại C và D sao cho AB=CD=2. Tính khoảng cách từ điểm I đến đường thăng delta
2. trong mặt phẳng toạ độ oxy, cho tứ giác ABCD với AB:3x-4y+4=0, BC: 5+12y-52=0, CD: 5x-12y-4=0, AD:3x+4y-12=0. tìm điểm I nằm trong tứ giác ABCD sao cho d(I, AB)=d(I,BC)=d(I,CD)=d(I,DA)
a) Viết phương trình chính tắc của elip (E) đi qua điểm \(A\left(0;2\right)\) và có một tiêu điểm là \(F_1\left(-\sqrt{5};0\right)\)
b) Tìm độ dài trục lớn, trục nhỉ, tiêu cự và tỉ số \(\dfrac{c}{a}\) của elip (E)
c) Tìm diện tích của hình chữ nhât cơ sở của (E)
Cho elip \(\left(E\right):\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\)
Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó ?
trong mặt phẳng tọa độ Oxy cho đường tròn (c): \(x^2+y^2+2x-6y+5=0.\) gọi \(\Delta\) là tiếp tuyến của (c) tại điểm A(0;1).tìm pt tổng quát của \(\Delta\)
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
Trong mặt phẳng tọa độ Oxy, cho các đường thẳng \(\Delta_1:x-2y-3=0\) và \(\Delta_2:x+y+1=0\). Tìm tọa độ điểm M thuộc đường thẳng \(\Delta_1\) sao cho khoảng cách từ điểm M đến đường thẳng \(\Delta_2\) bằng \(\dfrac{1}{\sqrt{2}}\)