Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+m-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=-m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-m+3}{m-1}\\y=0\end{matrix}\right.\)
=>\(A\left(\dfrac{-m+3}{m-1};0\right)\)
\(OA=\sqrt{\left(0+\dfrac{-m+3}{m-1}\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-3}{m-1}\right)^2}=\left|\dfrac{m-3}{m-1}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x+m-3=0\left(m-1\right)+m-3=m-3\end{matrix}\right.\)
=>B(0;m-3)
\(OB=\sqrt{\left(0-0\right)^2+\left(m-3-0\right)^2}=\sqrt{\left(m-3\right)^2}=\left|m-3\right|\)
Để ΔOAB cân thì OA=OB
=>\(\left|m-3\right|=\left|\dfrac{m-3}{m-1}\right|\)
=>\(\left|m-3\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}m-3=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=3\\\left|m-1\right|=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m-1=1\\m-1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=3\\m=2\\m=0\end{matrix}\right.\)