H24

cho (d):y=(m-1)x+m-3

gọi A, B lần lượt là giao điểm của (d) với 2 trục tọa độ Ox, Oy. Tìm m để tam giác OAB cân

NT
14 tháng 12 2023 lúc 20:25

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+m-3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=-m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-m+3}{m-1}\\y=0\end{matrix}\right.\)

=>\(A\left(\dfrac{-m+3}{m-1};0\right)\)

\(OA=\sqrt{\left(0+\dfrac{-m+3}{m-1}\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-3}{m-1}\right)^2}=\left|\dfrac{m-3}{m-1}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x+m-3=0\left(m-1\right)+m-3=m-3\end{matrix}\right.\)

=>B(0;m-3)

\(OB=\sqrt{\left(0-0\right)^2+\left(m-3-0\right)^2}=\sqrt{\left(m-3\right)^2}=\left|m-3\right|\)

Để ΔOAB cân thì OA=OB

=>\(\left|m-3\right|=\left|\dfrac{m-3}{m-1}\right|\)

=>\(\left|m-3\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)

=>\(\left[{}\begin{matrix}m-3=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=3\\\left|m-1\right|=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m-1=1\\m-1=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=3\\m=2\\m=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
VC
Xem chi tiết
VT
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết