59

Cho đường tròn tâm O, đường kính BC = 2R. Lấy điểm A thuộc đường tròn sao cho AC = R . Vẽ OE vuông góc với AB tại E. Tiếp tuyến tại B của đường tròn (O) cắt đường thẳng OE tại điểm M.

1/ Chứng minh MA là tiếp tuyến của đường tròn (O).

2/ Chứng minh bốn điểm A, O, B, M cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó theo R.

NT
10 tháng 1 2022 lúc 20:44

1: Xét ΔMBO và ΔMAO có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔMBO=ΔMAO

Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)

hay MA là tiếp tuyến của (O)

2: Xét tứ giác AOBM có 

\(\widehat{MAO}+\widehat{MBO}=180^0\)

nên AOBM là tứ giác nội tiếp

Bình luận (0)

Các câu hỏi tương tự
49
Xem chi tiết
VT
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
TG
Xem chi tiết
DK
Xem chi tiết
NN
Xem chi tiết
MM
Xem chi tiết
LN
Xem chi tiết