TT

Cho đường tròn tâm O, điểm A nằm bên ngoài đường tròn. Kể các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi I là giao điểm của OA và BC a)chứng minh tam giác ABC cân b) Chứng minh OA vuông góc với BC c) Tính độ dài Bl, biết OB = 3 cm; OA = 5 cm d) Chứng minh rằng: AB²-OC²=AI²-OI²

NT
14 tháng 12 2023 lúc 20:53

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC
=>ΔABC cân tại A

b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại I và I là trung điểm của BC

c: Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)

=>\(BA^2+3^2=5^2\)

=>\(BA^2=25-9=16\)

=>\(BA=\sqrt{16}=4\left(cm\right)\)

Xét ΔBOA vuông tại B có BI là đường cao

nên \(BI\cdot OA=BO\cdot BA\)

=>\(BI\cdot5=3\cdot4=12\)

=>BI=12/5=2,4(cm)

d: Ta có: ΔABI vuông tại I

=>\(IB^2+AI^2=AB^2\)

=>\(IB^2=AB^2-AI^2\left(3\right)\)

Ta có: ΔOIC vuông tại I

=>\(OC^2=OI^2+CI^2\)

=>\(CI^2=OC^2-OI^2\left(4\right)\)

I là trung điểm của BC

=>IB=IC(5)

Từ (3),(4),(5) suy ra \(AB^2-AI^2=OC^2-OI^2\)

=>\(AB^2-OC^2=AI^2-OI^2\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
CT
Xem chi tiết
QM
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
TN
Xem chi tiết
KM
Xem chi tiết
LP
Xem chi tiết
HH
Xem chi tiết