H24

cho đường tròn tâm o bán kính r lấy A sao cho AO=2r các tiếp tuyến AB, AC với đường tròn tâm O OA cắt O tại I đường thẳng đi qua O và vuông góc với OB cắt AC tại K a, chứng minh tam giác OAK cân tại K b, đường thẳng KI cắt AB tại m. chứng minh KM là tiếp tuyến của đường tròn tâm O c, tính chu vi tam giác AMK theo r

NT
29 tháng 12 2023 lúc 22:56

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC và OA là phân giác của góc BOC

Ta có: \(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCAO vuông tại C)

\(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{KAO}=\widehat{KOA}\)

=>ΔKAO cân tại K

b:

Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔBOA vuông tại B

=>\(\widehat{BAO}+\widehat{BOA}=90^0\)

=>\(\widehat{BOA}=90^0-30^0=60^0\)

Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
TJ
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
TP
Xem chi tiết
QN
Xem chi tiết
MT
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết