1: góc OMP=góc ONP=90 độ
=>OMNP nội tiếp
1: góc OMP=góc ONP=90 độ
=>OMNP nội tiếp
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO ngoại tiếp đường tròn
C. Tính CM, CN không phụ thuộc vào vị trí M
cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (khác 0) đường thẳng CM cắt đường tròn tâm O tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở điểm P. Chứng minh rằng:
a. Tứ giác OMNP nội tiếp được đường tròn
b. Tứ giác CMPO là hình bình hành
C. Tính CM, CN không phụ thuộc vào vị trí M
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M ( M khác O). CM cắt đường tròn tâm O tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở P. Chứng minh:
1) Tứ giác OMNP nội tiếp
2) Tứ giác CMPO là hình bình hành
3) Tích CM.CN không phụ thuộc vào vị trí của điểm M
4) khi M di chuyển trên đoạn thẳng AB thì P chạy trên đoạn thẳng cố định nào?
cho(O:R) 2 đường kính AB và CD vuông góc với nhau. Trên OB lấy M khác O và M tia CM cắt O tại N đường thẳng vuông góc với AB tại M cắt tiếp tuyến qua N tại P chứng minh.
a, Tứ giác OMNP nội tiếp
b, CM.CN=2R\(^2\)
c, DP là tiếp tuyến đường tròn O
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M M khác O . CM cắt đường tròn tâm O tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở Q
a) c/m 4 điểm m ,o,q,n thẳng hàng
b)c/ CM*CN=CO*CD
Cho đường tròn (O,R) có hai đường kính AB và CD vuông góc với nhau . Gọi M là trung điểm của OA , CM cắt (O) tại N . Đường thẳng vuông góc với Ab tại M cắt tiếp tuyến tại N của đường tròn (O) ở P
1, Cm tứ giaccs OMNP nội tiếp
2, H và K lần lượt là giao điểm của đoạn thẳng BN với CD và AD. Cm tứ giác CMPO là hình bình hành
3, Cm OK vuông góc với AD
Giải bài toán hình Cho (O;R) hai đường kính AB,CD vuông góc với nhau .M là điểm bất kì nằm trên đường kính AB(M khác O ),đường thẳng CM cắt (O) tại điểm thứ hai N , đường thẳng d vuông góc với AB tại M cắt tiếp tuyến Nx tại P . Chứng minh rằng a Tứ giác OMNP nội tiếp b Tứ giác CMPO là hình bình hành c CM*CN không phụ thuộc vào vị trí của M d Khi M di động thì P chạy trên đoạn thẳng cố định
Cho đường tròn (O:R) vài hai đường kính AB và CD vuông góc với nhau.Trong đoạn OB lấy điểm M (M khác O).Tia CM cắt đường tròn (O) tại điểm thứ hai N.Đường thẳng vuông goác với AB tại M cắt cát tuyến qua N của đường tròn (O) tại điểm P C/M tứ giác CMPO là hình bình hành
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp