Bài 4: Vị trí tương đối của đường thẳng và đường tròn

PD

Cho đường tròn tâm O bán kính 6 cm, đường kính AB .qua A kẻ tiếp tuyến Ax. Trên đó lấy điểm C sao cho Ac = 5 cm ,BC cắt đường tròn tại M

a,Tính độ dài BC

b,Tính AM,MB,MC

AH
28 tháng 8 2021 lúc 16:52

Lời giải:

a. Vì $AC$ là tiếp tuyến của $(O)$ nên $AC\perp OA$ hay $AC\perp AB$

Do đó tam giác $ABC$ vuông tại $A$

$AB=2R=12$ (cm)

$AC= 5$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13$ (cm)

b.

$\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow AM\perp MB$ hay $AM\perp BC$

Áp dụng hệ thức lượng trong tam giác vuông với tam giác vuông $ABC$, đường cao $AM$

$\frac{1}{AM^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{5^2}+\frac{1}{12^2}$

$\Rightarrow AM=\frac{60}{13}$ (cm)

Áp dụng định lý Pitago:

$MC=\sqrt{AC^2-AM^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm)

$BM=BC-MC=13-\frac{25}{13}=\frac{144}{13}$ (cm)

Bình luận (1)
AH
28 tháng 8 2021 lúc 16:54

Hình vẽ:

Bình luận (0)
NT
28 tháng 8 2021 lúc 23:17

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+6^2=61\)

hay \(BC=\sqrt{61}\left(cm\right)\)

b: Xét (O) có 

ΔAMB nội tiếp đường tròn

AB là đường kính

Do đó: ΔAMB vuông tại M

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCAB vuông tại A có AM là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AM\cdot BC=AB\cdot AC\\AB^2=BM\cdot BC\\AC^2=CM\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{30\sqrt{61}}{61}\left(cm\right)\\BM=\dfrac{36\sqrt{61}}{61}\left(cm\right)\\CM=\dfrac{25\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
TM
Xem chi tiết
VL
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
PD
Xem chi tiết
TV
Xem chi tiết
ON
Xem chi tiết