NT

Cho đường tròn tâm O bán kính 3cm. Từ một điểm A cách O là 5cm vẽ hai tiếp tuyến AB, AC với đường tròn. Từ 1 điểm M bất kì trên cung nhỏ CB vẽ tiếp tuyến với (O) cắt AB, AC lần lượt tại N và Q:
a) Tính chu vi tam giác ABC
b) Tính chu vi tam giác AQN
c) Tính <QNO

NT
3 tháng 12 2023 lúc 10:54

a: Gọi H là giao điểm của AO và BC

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có \(OA^2=OB^2+BA^2\)

=>\(BA^2+3^2=5^2\)

=>\(BA^2+9=25\)

=>\(BA^2=25-9=16\)

=>BA=4(cm)

AB=AC

mà AB=4cm

nên AC=4cm

Xét ΔBAO vuông tại B có BH là đường cao

nên \(BH\cdot OA=OB\cdot BA\)

=>\(BH\cdot5=3\cdot4=12\)

=>BH=12/5=2,4(cm)

H là trung điểm của BC

=>BC=2*BH=2*2,4=4,8(cm)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=4+4+4,8=12,8\left(cm\right)\)

b: Xét (O) có

NM,NB là tiếp tuyến

Do đó: NM=NB và ON là phân giác của góc MOB

ON là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{NOM}\)

Xét (O) có

QM,QC là tiếp tuyến

Do đó: QM=QC và OQ là phân giác của \(\widehat{MOC}\)

OQ là phân giác của góc MOC

=>\(\widehat{MOC}=2\cdot\widehat{MOQ}\)

Chu vi tam giác AQN là:

\(C_{ANQ}=AN+NQ+AQ\)

\(=AN+NM+MQ+AQ\)

\(=AN+NB+QC+AQ\)

=AB+AC

=4+4

=8(cm)

c: Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)

nên \(\widehat{BOA}\simeq53^0\)

Xét (O) có

AB,AC là tiếp tuyến

Do đó: OA là phân giác của góc BOC

=>\(\widehat{BOC}=2\cdot\widehat{BOA}\simeq106^0\)

Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)

=>\(2\cdot\left(\widehat{NOM}+\widehat{QOM}\right)=\widehat{BOC}\)

=>\(2\cdot\widehat{NOQ}=\widehat{BOC}\)

=>\(\widehat{NOQ}=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\simeq53^0\)

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
PB
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
ND
Xem chi tiết
XP
Xem chi tiết
HL
Xem chi tiết
PB
Xem chi tiết