AV

: Cho đường tròn tâm ( O; 5cm ), hai dây AB, CD song song với nhau, có độ dài lần lượt là 8cm và  9,6cm. Tính khoảng cách giữa hai dây đó, biết tâm O nằm trong phần mặt phẳng giới hạn bới hai dây AB và CD.

NL
22 tháng 7 2021 lúc 23:01

undefined

Bình luận (0)
NL
22 tháng 7 2021 lúc 23:00

Từ O kẻ đường thẳng vuông góc AB và CD, cắt AB và CD lần lượt tại H và K

\(\Rightarrow\) H là trung điểm AB và K là trung điểm CD

\(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=4\\CK=\dfrac{1}{2}CD=4,8\end{matrix}\right.\)

Áp dụng định lý Pitago cho tam giác vuông OAH (với chú ý \(OA=OC=R=5\))

\(OH=\sqrt{OA^2-AH^2}=3\left(cm\right)\)

Pitago tam giác OCK:

\(OK=\sqrt{OC^2-CK^2}=1,4\left(cm\right)\)

\(\Rightarrow HK=OH+OK=4,4\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
HB
Xem chi tiết