DV

Cho đường tròn (O;R),đường kính AB.Gọi M là một điểm thuộc đường tròn sao cho MA>MB.Đường thẳng vuông góc với AB tại A cắt tiếp tuyến M của đường tròn (O) tại điểm E .Kẻ MP vuông góc với AB(P thuộc AB);MQ vuông góc với AE(Q thuộc AB)

1,Chứng minh:Tứ giác AEMO là tứ giác nội tiếp.

2,Gọi I là trung điểm của PQ,Chứng minh:Tứ giác AQMP là hình chữ nhật,từ đó chứng minh ba điểm O,I,E thẳng hàng

3,Gọi K là giao điểm của EB và MP.Chứng minh :OAMP=AEBP

NT
22 tháng 1 2024 lúc 1:18

1: Xét tứ giác EAOM có \(\widehat{EAO}+\widehat{EMO}=90^0+90^0=180^0\)

nên AEMO là tứ giác nội tiếp

2: Xét tứ giác AQMP có \(\widehat{APM}=\widehat{AQM}=\widehat{PAQ}=90^0\)

nên AQMP là hình chữ nhật

=>AM cắt PQ tại trung điểm của mỗi đường

mà I là trung điểm của PQ

nên I là trung điểm của AM

=>I nằm trên đường trung trực của AM(1)

Xét (O) có

EA,EM là các tiếp tuyến

Do đó: EA=EM

=>E nằm trên đường trung trực của AM(2)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(3)

Từ (1),(2),(3) suy ra E,I,O thẳng hàng

 

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
CT
Xem chi tiết
PH
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
NV
Xem chi tiết