Cho Đường tròn (O;R=3cm). Vẽ dây cung AB=4cm. Lấy M là điểm trên đoạn thẳng OA sao cho OM=1cm .Đường thẳng vuông góc với OA tại M cắt AB tại C .Tính AB*AC
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Chứng minh tứ giác MCAE nội tiếp
b) Chứng minh BE.BM = BF.BN
Cho đường tròn (O;R):R=4cm. Vẽ dây cung AB=5cm.C là điểm trên dây cung AB sao cho AC=2cm. Vẽ CD vuông góc với OA tại D. Tính độ dài đoạn thẳng AD.
Các bạn làm ơn giúp mình với !!! Cảm ơn nhiều !!!
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Khi EF=4R/ căn 5. Tính DE,DF theo R
b) Cho A,B,C cố định.CMR tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên 1 đường thẳng cố định khi E chạy trên đường tròn (O)
Cho nửa đường tròn tâm O bán kính R, đường kính AB. C là điểm trên đoạn OA sao cho OC = 2/3 OA. Đường thẳng vuông góc với AB tại C cắt nửa đường tròng ( O:R) tại I. Gọi H là điểm chuyển động trên đoạn CI. Đường thẳng AH cắt nửa đường tròn (O;R) tại M. Đường thẳng BM cắt đường thẳng CI tại D. Tiếp tuyến tại M của nửa đường tròn (O;R) cắt CD tại K. Cho CH = 2/3 CI. Tính diện tích tam giác ABD theo R
Cho đường tròn (O) có bán kính OA = 5cm. Trên OA lấy điểm H sao cho OH = 3cm. Qua điểm H vẽ đường thẳng vuông góc với OA, cắt đường tròn tại 2 điểm B và C. Tiếp tuyến của đường tròn (O) tại B cắt đường thẳng OA tại M.
a) C/m ∆OBM vuông.
b) Tính BH và BM.
c) C/m MC là tiếp tuyến của đường tròn (O)
d) Tìm tâm của đường tròn đi qua 4 điểm O, B, M, C.
Cho đường tròn (O;R), đường kính AB. Lấy điểm M trên đoạn thẳng OA, đường thẳng qua M vuông góc với AB cắt đường tròn (O) tại C. Gọi D là điểm chính giữa của cung AB(C và D nằm khác phía đối với AB). Xác định vị trí của điểm M để diện tích tam giác MCD lớn nhất.
Cho đường tròn (O;R)), đường kính AB. Gọi I là điểm chính giữa cung AB. Lẫy điểm M bất kì trên đoạn thẳng OA (M khác OO và A)A). Tia IM cắt đường tròn tại điểm thứ hai N. Đường thẳng qua M, vuông góc với AB cắt đoạn thẳng BN tại C. a) Chứng minh bốn điểm A, M,C,N cùng thuộc một đường tròn. b) Tính số đo góc AMN và chứng minh AM=MC. c) Khi M thay đổi trên đoạn OA, chứng minh MN<R.
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi.