Chương II - Đường tròn

NH

Cho đường tròn (O,R) và đường thẳng d cố định, d không có điểm chung với đường tròn. Gọi M là điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA,MB với đường tròn (A,B là các tiếp điểm). Từ O kẻ OH vuông góc với đường thẳng d (H thuộc d). Nối A với B, AB cắt OH tại K và cắt OM taị I. Gọi E là tâm đường tròn nội tiếp Δ MAB. Giả sử R = 6 cm và góc AMB = 60 độ. Tính bán kính đường tròn nội tiếp Δ MAB

NT
12 tháng 1 2024 lúc 22:25

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB và MA=MB

MO là phân giác của góc AMB

=>\(\widehat{AMO}=\dfrac{\widehat{AMB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔOAM vuông tại A có \(tanAMO=\dfrac{OA}{AM}\)

=>\(\dfrac{6}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)

=>\(AM=6\cdot\dfrac{3}{\sqrt{3}}=6\sqrt{3}\left(cm\right)\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

=>\(\widehat{MBA}=60^0\)

Gọi bán kính đường tròn nội tiếp ΔMAB là d

Diện tích tam giác MBA là:

\(S_{MBA}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB\)

\(=\dfrac{1}{2}\cdot6\sqrt{3}\cdot6\sqrt{3}\cdot sin60=27\sqrt{3}\left(cm^2\right)\)

Nửa chu vi tam giác MBA là:

\(p=\dfrac{6\sqrt{3}+6\sqrt{3}+6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)

Xét ΔMBA có \(S_{MBA}=p\cdot d\)

=>\(d=\dfrac{27\sqrt{3}}{3\sqrt{3}}=9\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
NK
Xem chi tiết
PR
Xem chi tiết
QT
Xem chi tiết
NK
Xem chi tiết
KL
Xem chi tiết
TM
Xem chi tiết
NM
Xem chi tiết
PH
Xem chi tiết